Ракета «Вассерфаль»

Ракета «Вассерфаль»
Ракетное оружие. Класс «земля - воздух». Зенитная управляемая ракета, одноступенчатая, с ракетным двигателем, работающим на жидких компонентах топлива. Германия, 1944-45 гг.

Пуски проводились на полигоне Пенемюнде в 1944-45 г.

Ракета Wasserfall - «Вассерфаль» (от немецкого – «водопад») - разработана в Германии Вернером фон Брауном в начале 1940-х и была предназначена для перехвата самолетов.

Краткая история проекта ракеты «Вассерфаль»

Технические условия проекта ракеты «Вассерфаль» от 2 ноября 1942 года предусматривали создание ракеты-перехватчика с максимальной скоростью 2 Маха, способной поражать воздушные цели, летящие со скоростью до 900 км/ч на высоте от 5 до 20 км в радиусе 50 км. К другим требованиям относился срок (несколько месяцев) нахождения с полностью заправленными баками, чтобы обеспечить оперативное использование в любую погоду, независимо от температуры окружающей среды, несложное обслуживание и простые сливные устройства для топлива.

У истоков проекта ракеты «Вассерфаль» стоял немецкий инженер Людвиг Рота, работавший в Институте наземных войск в Пенемюнде, который сделал первые прикидки управляемой ракеты и считал, что её смогут принять на вооружение в 1945 г. По поводу сроков он оказался не далеко от истины.

По своей концепции это была наиболее передовая система зенитных управляемых реактивных снарядов (далее ЗУРС) из всех создаваемых в то время. В 1941 г. было сформировано специальное конструкторское бюро под руководством В. фон Брауна, с которым 2 ноября 1942 г. Министерство авиации заключило специальный контракт (единственный в то время в этой области исследований) на строительство ракет С 2F, официально названный Wasserfall W 1, так что финансирование работ шло за счёт государства. Одновременно на площадке Пенемюнде-Вест был создан «Испытательный центр зенитных орудий» -по сути, полигон со стендами для проверки не только орудий, но и ракет. Там и базировалось конструкторское бюро зенитных ракет.

Первой задачей конструкторов было определить размер и форму корпуса ракеты, которая при крупносерийном производстве не должна ограничивать или сокращать существующие мощности оружейных отраслей промышленности. В результате предложили цельнометаллическую ракету веретёнообразной формы диаметром 0,88 м с удлинением 8,46, снабжённую в хвостовой части большими стабилизаторами.

Аэродинамические продувки первых моделей ракет (в масштабе 1:25) были начаты в начале 1943 г. в сверхзвуковой трубе в Пенемюнде. После ночного авианалёта на эту базу, в августе 1943 г. (в то время ещё не были известны важные результаты трубных измерений) решили прекратить аэродинамические продувки и перебазировать трубу в южную Германию. В январе 1944 г. в г. Кохель труба была снова собрана, но только в октябре введена в эксплуатацию. Однако уже не удалось достичь прежней нагрузки на трубу (в Пенемюнде она работала по 500 часов в месяц, в Кохеле – меньше, чем 200). Таким образом, не были своевременно получены подробные и надёжные научные данные из области аэродинамики высоких скоростей, которые можно было применять при проектировании «Вассерфаля», и поэтому конструкторам остался единственный выход – опираться на измерения и практический опыт, полученный при разработке А-4.

Сроки поджимали, воздушные налёты союзников усиливались, что вынудило инженеров-конструкторов взять от ракет А-4 форму корпуса и стабилизатора. Добавлены были только газовые и аэродинамические рули, данные по которым можно было взять из нескольких трубных экспериментов над ракетой А-4В с крыльями. Кроме этого, в ходе продувок исследовались разные формы аэродинамических рулей при дозвуковых и сверхзвуковых скоростях, а также форма и положение крыльев различной формы.

Компоновка ракеты «Вассерфаль»

Общая длина ракеты составляла 7,8-7,93 м, максимальный диаметр корпуса – 885 мм, размах стабилизаторов по рулям - 2510 мм. Ракеты «Вассерфаль»-1 несли трапециевидные крылья с малой стреловидностью по передней кромке, как показано на чертеже. Потом из-за большого сопротивления на околозвуковых скоростях их заменили на крылья меньшей площади с острыми передней и задней кромками и большой стреловидностью. Сначала крылья крепились со смещением в 45 градусов относительно стабилизаторов. Это было сделано для исключения затенения стабилизаторов крылом. Дальнейшие исследования показали, что опасения были напрасными, и крылья со стабилизаторами стали крепить в одной плоскости.

Компоновка ракеты «Вассерфаль»
Компоновка ракеты «Вассерфаль»

1 – неконтактный взрыватель; 2 – боевая часть; 3 – баллон со сжатым азотом; 4 – пироклапан; 5 – редукционный клапан; 6 – пироклапан; 7 – бак горючего; 8 – гибкий элемент; 9 – заборщик горючего; 10 – трубопровод наддува бака окислителя; 11 – трубопровод горючего; 12-крыло; 13-лонжерон; 14-бак окислителя; 15 – гибкий элемент; 16 – заборщик окислителя; 17 – приборы управления; 18 – расширительный сильфон; 19 – радиоприёмник; 20 – гироскопы; 21 – сервомотор; 22 – тяга управления газовым рулём; 23 – стабилизатор; 24 – газовый руль; 25 – воздушный руль; 26 – камера сгорания ЖРД Р IX

Корпус, крыло и стабилизатор являли собой конструкцию с работающей обшивкой, представлявшей собой каркас из сборных стальных элементов и обшивку из стальной жести толщиной 0,5-0,8 мм, приваренную к нему с помощью точечной сварки.

В носовой части фюзеляжа располагались аппаратура неконтактного взрывателя (который ещё предстояло разработать) и взрыватель, срабатывающий по радиокоманде с земли.

Вообще для зенитных ракет разрабатывалась целая гамма неконтактных взрывателей:

Один из этих взрывателей предполагалось установить на ЗУРС «Вассерфаль», а пока решили ограничиться взрывателем, управляемым с земли.

Далее следовал отсек боевой части весом 250 кг. Он содержал 145 кг взрывчатки и 90 кг поражающих элементов. Кроме этого, имелся дополнительный заряд для самоликвидации ракеты при промахе. Проблема самоликвидации была решена успешно – осколки ракеты имели вес не более 0,9 кг, и только обломок двигателя весил 68 кг. Велись работы по применению жидкой взрывчатки. Предполагалось, что она будет распылена в воздухе, а потом – подорвана. В результате надеялись получить большую зону поражения от ударной волны (своеобразная предтеча современных объёмно-детонирующих боеприпасов). Но это всё осталось только на бумаге.

Ниже расположен стальной баллон диаметром 800 мм, сваренный из двух штампованных полусфер и армированный стальной проволокой (по типу баллонов у Фау-1). В баллоне находился сжатый до 20 МПа (200 атм.) азот (по другим данным – воздух). За ним следовал бак с горючим «визоль». Ещё ниже расположен бак с окислителем «сальбай». Баки изготавливались из фосфатированной стали толщиной 6 мм.

Через бак проходили главные лонжероны крыльев. Далее следовал приборный отсек с аппаратурой управления и исполнительными механизмами, и, наконец, на специальной раме крепился жидкостно-реактивный двигатель.

К хвостовому отсеку пристыковывались четыре стабилизатора с развитыми воздушными рулями и хорошо подобранной аэродинамической компенсацией, которая снижала потребную мощность сервоприводов и вес.

Для управления снарядом на начальном участке траектории, пока скорость была мала и эффективность аэродинамических рулей не высока, служили газовые рули из графита, которые вскоре после старта сбрасывались. Стартовый вес ракеты составлял 3530 кг.

Силовая установка ракеты «Вассерфаль»

Схема силовой установки показана на чертеже. Так как ракета была зенитной, то это накладывало на силовую установку определённые требования. ЗУРС должен был длительное время находиться в заправленном состоянии и готовности к немедленному пуску. В связи с этим жидкий кислород в качестве окислителя не годился, поэтому был выбран «сальбай» – 98-100% азотная кислота. Запас кислоты располагался в заднем баке и составлял 1500 кг. Горючее называлось «визоль» и представляло собой винилизобутиловый спирт. Топливо «визоль» + «сальбай» было самовоспламеняющимся, что позволило отказаться от системы зажигания. Вес горючего составлял 345-360 кг.

Схема силовой установки ЗУРС «Вассерфаль» с двигателем Р IX
Схема силовой установки ЗУРС «Вассерфаль» с двигателем Р IX

1 – баллон со сжатым азотом; 2 – пороховой заряд; 3 – поршень; 4 – клапан (мембрана высокого давления); 5 – редуктор давления азота; 6 – пироклапан низкого давления; 7 – разрывные мембраны; 8 – труба наддува бака горючего; 9 – гибкая подвеска заборщика горючего; 10 – заборщик горючего; 11 – бак горючего; 12 – труба наддува бака окислителя; 13 – гибкая подвеска заборщика окислителя; 14 – заборщик окислителя; 15 – бак окислителя; 16 – сильфонные коробки; 17 – мембраны на линиях горючего и окислителя; 18 – дроссельные заслонки; 19 – сервопоршень управления дроссельными заслонками; 20 – форсуночная головка; 21 – камера сгорания; 22 – сопло; 23 – подача горючего; 24 – подача окислителя; 25 – расширительное кольцо; 26 – крепление двигателя; 27 – внешняя обшивка камеры сгорания

Баки горючего и окислителя выполнялись из фосфатистой стали толщиной 6 мм. Для защиты от агрессивного воздействия компонентов топлива баки изнутри покрывались специальной пластмассой. Но, несмотря на принятые меры, из-за коррозии топливной системы время хранения заправленной ракеты не превышало нескольких суток.

Система подачи компонентов была вытеснительной и осуществлялась с помощью сжатого азота (см. схему). Азот под давлением 20 МПа (200 атм.) хранился в сферическом баллоне и по трубопроводу поступал к мембранному клапану высокого давления. При подаче электросигнала на этот клапан происходил взрыв пиропатрона, специальный поршень со штоком разрывал металлическую мембрану – и азот поступал к редуктору давления 5, в котором его давление снижалось до 3,5 МПа (35 атм.). С этого момента двигатель был готов к запуску. Практически одновременно сигнал поступал на клапан низкого давления 6. Это был пироклапан поршневого типа, имевший два заряда – один на открытие, другой на закрытие. Наличие второй команды было необходимо для остановки двигателя при перехвате цели на короткой дистанции.

Далее азот разрывал мембраны 7 и поступал в баки. Наличие мембран 7 и 17 было необходимо для герметизации баков и предотвращения случайного смешивания компонентов.

После наддува баков компоненты начинали поступать в трубопроводы. Топливо из баков забиралось с помощью специальных заборщиков 10 и 14, подвешенных на сильфонных шарнирах 9 и 13, обеспечивающих отклонения заборщиков вслед за отклонением масс жидкостей при манёврах ракеты.

Под давлением азота топливо прорывало мембраны 17 (рассчитанные на 0,5 МПа – 5 атм.) и начинало поступать в двигатель. Для обеспечения плавности запуска в трубопроводах расположены дроссельные заслонки 18. При запуске двигателя они находились в приоткрытом состоянии. После прорыва мембран 17 горючее поступало в цилиндр сервопоршня 19, который под давлением горючего медленно перемещался, открывая заслонки 18. Тем самым обеспечивалось плавное нарастание подачи топлива и – спокойный выход двигателя на режим. В последующий период работы двигателя заслонки оставались открытыми. Сам двигатель – камера сгорания с соплом и система запуска – имел обозначение Р IX (Р-Peenemunde, IX – номер, присвоенный в Пенемюнде-Ост).

Горючее поступало в головку камеры сгорания непосредственно, а окислитель – пройдя рубашку охлаждения двигателя. Горючее и окислитель смешивались, самовоспламенялись и сгорали в камере сгорания 21. Давление там составляло 2,0 МПа (20 атм.), при этом двигатель развивал тягу порядка 78,4 кН (8000 кгс), в течение 40-45 секунд.

При отработке двигателя концентрацию азотной кислоты снизили, чтобы уменьшить её коррозионное воздействие.

В процессе испытаний известны, по крайней мере, три случая взрывов двигателя на стенде. В одном случае во время транспортировки окислителя и во время заправки шёл дождь. Кислота адсорбировала влагу из атмосферы – это увеличило её агрессивные свойства. В результате была нарушена герметичность мембраны, что привело к попаданию некоторого количества окислителя в камеру сгорания. При запуске двигатель взорвался. После этого заправку стали проводить непосредственно на старте, после проверки герметичности системы.

Максимальное теоретическое время работы двигателя (45 секунд) никогда не достигалось. У первых испытанных ракет причиной был вихрь, возникающий на воронках забора топлива из баков. В результате в трубопроводы преждевременно попадал азот, что сокращало время работы двигателя до 7 секунд. Для смягчения негативных последствий этого явления баки были снабжены подвижными заборщиками для всасывания топлива. Они под действием ускорений поворачивались в места с максимальной глубиной жидкости. Подвижность обеспечивалась с помощью металлических (сильфонных) или каучуковых шарниров. Проблема защиты от коррозии при этом была очень серьёзной. Ни один из способов отбора топлива, разработанных инженером Мёбусом, в полной мере не удовлетворял условиям эксплуатации. Другой проблемой была потеря скорости истечения газов из сопла. По расчётам, она должна была составлять 1870 м/с, но у окончательно выбранного топлива скорость составила всего 1780 м/с, что привело к необходимости увеличить расход ингредиентов на 2 кг/с.

Жидкостный ракетный двигатель (далее - ЖРД) Р IX с тягой 8000 кгс имел длину 1105 мм и вес 150 кг (с баками, трубопроводами и арматурой – 800 кг). Он состоял из литой форсуночной головки, камеры сгорания объёмом 78 литров, сопла с диаметром критического сечения 192 мм и углом раскрытия 25 градусов.

Форсуночная головка первых Р IX изготавливалась из никелевой стали, позже появился ряд деталей из лёгких сплавов. Топливо через неё поступало в камеру сгорания через 32 форсунки. Окислитель проходил через охлаждающий тракт, а потом через 128 форсунок поступал в камеру сгорания.

Система управления зенитной ракетой «Вассерфаль»

Первоначально предполагалось, что ракета «Вассерфаль» будет наводиться по лучу радио-локационной станции (далее - РЛС). При этом РЛС должна была отслеживать цель, а ЗУРС с помощью бортовой системы управления должна была удерживаться на оси радиолокационного луча вплоть до встречи с целью. Идея была, безусловно, прогрессивной, но такие системы в то время были только на начальной стадии исследований. Поэтому была предложена система наведения с использованием радиокоманд и двух РЛС.

Схема наведения ЗУРС «Вассерфаль» с помощью радиолокационной системы Rheinland
Схема наведения ЗУРС «Вассерфаль» с помощью радиолокационной системы Rheinland

По этой схеме одна РЛС следила за целью, а вторая отслеживала ЗУРС. При этом обе отметки (от цели и ракеты) выводились на одну электронно-лучевую трубку. Оператор с помощью ручки на так называемом «кнюппеле» старался совместить на экране отметки от цели и ЗУРС. Сигналы от «кнюппеля» поступали в счётно-решающее устройство фирмы Сименс, где вырабатывались необходимые команды управления, которые с помощью передатчика по радиоканалу передавались на ракету. В условиях хорошей видимости слежение за целью и ракетой оператор выполнял визуально, используя бинокли. Для облегчения наблюдения на ракете можно было установить специальный трассер.

Радиолокатор слежения за целью имел параболическую антенну диаметром 7,4 метра, а радиолокатор сопровождения ракеты – параболическую антенну диаметром три метра. Система работала в дециметровом диапазоне волн. Передатчик команд имел круговую поляризованную антенну, работающую в диапазоне УКВ. Для упрощения слежения за ракетой на неё устанавливали специальный радиоответчик.

На борту ракеты сигналы управления принимались, дешифровывались, усиливались и передавались на рулевые машинки типа «Сименс К-2». Стабилизация ракеты по крену и гашение колебаний по остальным осям производились бортовым автопилотом. Такая система наведения обеспечивала бы всепогодность применения комплекса «Вассерфаль».

Основная часть бортовой аппаратуры управления располагалась в хвостовом отсеке и закрывалась съёмными лючками. Это упрощало предстартовое обслуживание и исключало применение высоких стремянок (в отличие от «Фау-2», у которой аппаратура размещалась в носу ракеты).

Исполнительными органами системы управления являлись четыре больших руля, расположенных на стабилизаторе, а на начальном этапе полёта – четыре газовых графитовых руля, введённых в струю ЖРД. После набора необходимой скорости газовые рули сбрасывались, чтобы уменьшить потери тяги. Сбрасываемые газовые рули впоследствии были применены на некоторых советских ЗУРС.

Радиолокационные средства системы Rheinland для ЗУРС «Вассерфаль»
Радиолокационные средства системы Rheinland для ЗУРС «Вассерфаль»

Разработка системы наведения с помощью двух РЛС затягивалась, поэтому основную ставку пришлось сделать на применение радиокомандной системы с оптическим слежением за целью и ракетой. Всепогодность при этом, конечно, терялась, однако такая система была более простой и надёжной. Радиокомандная система управления отрабатывалась при запусках некоторых ракет А-4. Для зенитных ракет немецкие конструкторы разрабатывали сразу три системы радиоуправления: «Бургунд» (в трёх версиях: FuG 203 «Кёхль»; FuG 230 «Кёхль» и FuG 230), «Стразбург» и «Франкен» (в двух версиях: FuG 512 «Когге» и FuG 530 «Бригг»), Все они имели визуальное отслеживание цели и ракеты. Предполагалось после испытаний выбрать лучшую и использовать её в боевых ракетах. В перспективе использование радиолокационной системы Рейнланд А отнюдь не предполагало отмены визуального наблюдения за ракетой и целью.

Также для ЗУРС «Вассерфаль» разрабатывались две инфракрасные системы самонаведения на конечном участке полёта. Эти работы не вышли из стадии предварительных исследований.

Производство и испытания ракет «Вассерфаль»

Ракета была представлена на испытания в феврале 1944 года – на четыре месяца позже, чем предписывал план. По одному источнику, первый удачный запуск был выполнен 28 февраля 1944 года с острова Грефсвальдер. При этом ракета на дозвуковой скорости достигла высоты 7 км, после чего потеряла устойчивость и рухнула в море. По другим данным, первый успешный старт был выполнен 8 марта 1945 года. При этом третий прототип ракеты развил скорость 760 м/с и достиг высоты 18-20 км. Это превышало технические требования: скорость – 600 м/с, потолок – 10 км, горизонтальная дальность – 32 км.

Перед пуском ракета «Вассерфаль» вывозилась на перекатной тележке на стартовую позицию, где она заправлялась компонентами топлива. После подачи команды на пуск двигатель в течение 3-4 секунд выходил на режим, и ракета отрывалась от старта. Стабилизацию ракеты после взлёта обеспечивал автопилот с тремя гироскопами, каждый из которых работал по одной из главных осей. После шести секунд полёта выполнялся поворот ракеты на цель, примерно до 15…20 секунды полёта. При этом не разрешалось превышение допустимых углов атаки ракеты – 15 градусов при дозвуковой скорости и 8 градусов при сверхзвуковой скорости. Далее ракета наводилась на цель, по командам, рассчитанным вычислителем фирмы Сименс или Крейзельгерат.

Каждая из четырёх гидравлических или электрических рулевых машин работала на один газовый и один аэродинамический руль. Графитовые газовые рули, которыми ракета управлялась в начальной стадии полёта, после десяти секунд полёта (при скорости около 150 м/с) отделялись с помощью пиротехнических патронов. Их сброс улучшал характеристики двигателя ракеты.

До февраля 1945 года, когда работы в Пенемюнде были остановлены, а сама база начала эвакуацию в среднюю Германию, было запущено не менее 44 ракет, в основном управляемых оператором на основе визуального наведения. Из них успешными были признаны 12 пусков. По другим данным, было запущено 25 ракет, из них успешных – 15. Массовое производство предполагало выпуск 5000 ракет в месяц. Ракетными дивизионами предполагалось прикрыть все немецкие города с населением более 100 000 человек. Как бы то ни было, ракета была подготовлена к серийному производству и к концу 1945 года могла бы быть принята на вооружение и применена в бою, но этим планам не суждено было сбыться из-за окончания войны.

Послевоенные проекты на основе ракеты «Вассерфаль»

История ракеты «Вассерфаль» не окончилась с завершением войны. Из поверженной Германии американцы вывезли богатые научно-технические трофеи. Кстати, добыты они были в советской зоне оккупации.

Американские конструкторы сочли ракету «Вассерфаль» наиболее интересным образцом трофейного германского вооружения. В 1946—1953 годах ракета была включена в программу «Hermes», став в итоге её основой. На базе «Вассерфаль» была разработана серия ракет, но ни одна из них не была принята на вооружение. В итоге, к началу 1950-х годов стало ясно, что уровень американского ракетостроения уже превзошёл немецкий, и дальнейшие работы над трофейными ракетами были остановлены (хотя PGM-11 Redstone изначально разрабатывалась как Hermes С, в итоге проект был перезапущен независимо).

Советские специалисты также изучали и испытывали ракету «Вассерфаль». У нас она получила обозначение Р-101. Вот что пишет в своих воспоминаниях В.В. Казанский:

«…Впервые были применены высококипящие компоненты топлива: азотная кислота и нефтепроизводное горючее «тонка» (разновидность нашего керосина). Топливо подавалось в камеру сгорания двигателя не турбонасосным агрегатом, а с помощью воздушного аккумулятора давления (ВАД); чтобы иметь на борту ракеты воздух давлением 350 атм, немцы изготовили путём штамповки и сварки из двух половин стальной шар диаметром около 800 мм, … с навивкой на него стальной проволоки (обратите внимание: рабочий газ – воздух и его давление больше, чем указывается в других источниках – К.К.). Таким образом, предполагалось, что полностью заправленные компонентами ракеты с накаченными до 350 атм. аккумуляторами давления могут находиться на пусковых столах в постоянной боевой готовности в течение длительного времени.

Уже говорилось, что ни полного комплекта чертежей, ни узлов и деталей от этой ракеты обнаружить нашим группам не удалось (в Пенемюнде – К.К.). Поэтому всё, что сейчас является очевидным, тогда приходилось лишь додумывать. Особенно это касалось системы управления ракетой.

Следует сказать, что первые пуски ракет, как это часто бывает, прошли довольно успешно – система подачи топлива и двигатель ракеты хорошо запускались, двигатель отрабатывал полный импульс, работала система стабилизации (сначала на газовых рулях, потом, после их сброса, – на аэродинамических). Однако система управления имела определённые недостатки, и нам не удалось добиться полностью адекватной реакции ракеты на положение ручки «кнюппеля», хотя на первых порах много было оптимистов, особенно из числа «управленцев», которые убеждали нас в «разумном» поведении ракеты.

Необходимо отметить, что наиболее существенная (по сравнению с немецкой ракетой) модернизация её была осуществлена И.Н. Садовским и А.М. Исаевым (модернизированная ракета получила обозначение Р-102). И.Н. Садовский со своим коллективом сумел разработать конструкцию порохового аккумулятора давления (ПАД), существенно меньшего веса, технологичнее и безопаснее, чем стальная «бомба» с воздухом высокого давления у немцев. Одновременно А.М. Исаев создал для ракеты более мощный двигатель (9ТН) с лучшими удельными показателями, чем у Н.Л. Уманского. Тем самым был получен существенный выигрыш и в весе, и в тяговооружённости – как раз то, чего немецкой ракете не хватало. И на стендовых испытаниях, и при запуске первых модернизированных ракет это чувствовалось – она очень резво уходила со старта. Однако вскоре другие «системщики» стали потихоньку «съедать» полученное преимущество, и дело дошло до того, что последняя пускавшаяся ракета еле-еле оторвалась от стола, потом за счёт малой скорости подъёма её снесло в сторону и в результате она упала метрах в 300 позади старта, так и не поднявшись на необходимую высоту. Этим пуском была подведена черта под испытаниями нужной для нашей страны ракеты».

Из приведённого отрывка видно, что в СССР ракеты Р-101 и Р-102 так и не пошли дальше экспериментальных образцов, хотя и находились в опытном производстве. Эти работы не остались без внимания западных спецслужб и, возможно, ввели их в заблуждение. Так, вплоть до начала 1960-х годов в ряде зарубежных источников указывалось, что знаменитое кольцо ПВО вокруг Москвы вооружено ракетами «Вассерфаль».

Использован материал сайта МОДЕЛИСТ-КОНСТРУКТОР